Docker
docker run -p 5005:5005 -i -t jhfjhfj1/tamuta2:latest _bin_bash
python -m grpc_tools.protoc -I . --python_out=. --grpc_python_out=. core.proto
docker build -t tamuta2:latest .
docker build -f Dockerfile_dry_run -t ta2image .
docker run -i --entrypoint _bin_bash tamuta2 -c 'ta2_search $CONFIG_JSON_PATH'
docker build -f Dockerfile_base -t mybase .
docker run -i --entrypoint _bin_bash ta2image d-c '_resources_executable/1.sh $CONFIG_JSON'
docker run -p 5005:5005 -it --entrypoint _bin_bash jhfjhfj1/tamuta2:latest -c 'ta2_serve $CONFIG_JSON'
Create a docker image:
docker build -t autokeras:latest .
run docker as a shell:
docker run -it --entrypoint /bin/bash image_name
You save the image as a tar archive, using docker save -o
:
docker save -o archive.tar sheffien/rim
Then you load it (on a different computer) with
docker load -i archive.tar
and now it will show up in your docker images list:
docker images
The Docker.
Use ENV
to set environment variable.
docker build -t registry.datadrivendiscovery.org/ta2/texas-anm-university_tamu_1.0.0:latest .
docker login registry.datadrivendiscovery.org
docker push registry.datadrivendiscovery.org/ta2/texas-anm-university_tamu_1.0.0
docker tag tamuta2 jhfjhfj1/tamuta2
docker push jhfjhfj1/tamuta2
docker exec tamuta2 _bin_bash
Remove docker images.
docker rmi IMAGE_ID
Remove all docker images.
docker rmi $(docker images -a -q)
Remove all docker images with pattern
docker images -a | grep "pattern" | awk '{print $3}' | xargs docker rmi
Use gpus in docker containers
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -s -L https://nvidia.github.io/libnvidia-container/gpgkey | sudo apt-key add - && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
docker run --rm --gpus all tensorflow/tensorflow:latest-gpu nvidia-smi