444B
Description
There are two sequences called a and b of length n.
a is a permutation of 1~n.
b have d ones and n-d zeros.
c_i=max(a_{i-j}b_j),(0\leq j\leq i).
Tutorial
Set an value to s. (1 \leq s \leq n) For each c_i, we try the answer x from n to s. We can know whether c_i = x in O(1) with a preprocessing of recording the position of each number in a.
If the answer is not found with the operations above, we calculated with brute force. But we first record the position of each "1" in b, and we only check the "1"s to accelerate the brute force process.
Solution
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
#define MAX_N 100005
#define D(x)
int a[MAX_N], b[MAX_N];
int n, d;
long long x;
int one_num, one_pos[MAX_N];
int pos_a[MAX_N];
int ans[MAX_N];
void output(int ans[])
{
for (int i = 0; i < n; i++)
{
printf("%d\n", ans[i]);
}
}
int getNextX() {
x = (x * 37 + 10007) % 1000000007;
return x;
}
void initAB() {
int i;
for(i = 0; i < n; i = i + 1){
a[i] = i + 1;
}
for(i = 0; i < n; i = i + 1){
swap(a[i], a[getNextX() % (i + 1)]);
}
for(i = 0; i < n; i = i + 1){
if (i < d)
b[i] = 1;
else
b[i] = 0;
}
for(i = 0; i < n; i = i + 1){
int y;
swap(b[i], b[y = getNextX() % (i + 1)]);
D(printf("%d%d\n", i, y));
D(output(b));
D(puts(""));
}
}
void work()
{
int s = 30;
for (int i = 0; i < n; i++)
{
if (b[i] == 1)
{
one_pos[one_num++] = i;
}
}
for (int i = 0; i < n; i++)
{
a[i]--;
pos_a[a[i]] = i;
}
memset(ans, 0, sizeof(ans));
for (int i = n - 1; i >= 0; i--)
{
for (int j = n - 1; j >= n - s && j >= 0; j--)
{
if (pos_a[j] <= i && b[i - pos_a[j]] == 1)
{
ans[i] = j + 1;
break;
}
}
if (ans[i] != 0)
{
continue;
}
for (int j = 0; j < one_num; j++)
{
if (i - one_pos[j] < 0)
{
break;
}
ans[i] = max(ans[i], a[i - one_pos[j]] + 1);
}
}
}
void input()
{
int xx;
scanf("%d%d%d", &n, &d, &xx);
x = xx;
}
int main()
{
input();
initAB();
work();
output(ans);
return 0;
}